We consider the solution of large stiff systems of ordinary differential equations with explicit exponential Runge--Kutta integrators. These problems arise from semi-discretized semi-linear parabolic partial differential equations on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of $\varphi$-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required Krylov subspace iteration numbers to obtain a desired tolerance increase drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a-posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant rational Krylov iteration numbers, which enable a near-linear scaling of the runtime with respect to the problem size.
翻译:我们考虑使用显式指数Runge-Kutta积分器解决大型刚性常微分方程组问题。这些问题源自于连续域或固有离散图域的半离散半线性抛物型偏微分方程。一系列结果将指数积分器中计算$\varphi$函数线性组合的要求降低为近似计算作用于某些向量的少量矩阵指数的要求。目前最先进的计算方法使用动态大小的多项式Krylov子空间进行这项任务。它们的缺点是要达到所需的精度,必须计算的Krylov子空间迭代次数随着离散线性微分算子的谱半径(例如,问题规模)急剧增加。我们提出了一种方法,利用有理Krylov子空间方法,这种方法具有优越的近似质量。我们证明了有理Krylov逼近矩阵指数对单个时间点向量的新型后验误差估计。该误差估计允许类似于现有多项式Krylov技术的自适应方法。我们还讨论了极点的选择以及通过直接和预处理迭代求解产生的卷积线性系统的高效解决方案。数值实验表明,对于离散线性微分算子的谱半径足够大的情况,我们的方法优于现有技术。其关键在于近似恒定的有理Krylov迭代次数,这使得运行时间与问题规模几乎呈线性比例。