Understanding complex scenarios from in-vehicle cameras is essential for safely operating autonomous driving systems in densely populated areas. Among these, intersection areas are one of the most critical as they concentrate a considerable number of traffic accidents and fatalities. Detecting and understanding the scene configuration of these usually crowded areas is then of extreme importance for both autonomous vehicles and modern ADAS aimed at preventing road crashes and increasing the safety of vulnerable road users. This work investigates inter-section classification from RGB images using well-consolidate neural network approaches along with a method to enhance the results based on the teacher/student training paradigm. An extensive experimental activity aimed at identifying the best input configuration and evaluating different network parameters on both the well-known KITTI dataset and the new KITTI-360 sequences shows that our method outperforms current state-of-the-art approaches on a per-frame basis and prove the effectiveness of the proposed learning scheme.
翻译:在人口稠密地区安全运行自主驾驶系统时,了解车辆摄像机的复杂情景至关重要,其中,交叉地区是最重要的地区之一,因为它们集中了大量的交通事故和死亡。检测和了解这些通常拥挤地区的景象配置,对于自主车辆和现代自动自动自动行动系统都极为重要,以防止道路撞车,提高脆弱道路使用者的安全性。这项工作利用良好的联合神经网络方法以及根据教师/学生培训模式提高成果的方法,调查RGB图像的跨部门分类。一项广泛的实验活动,旨在确定已知的KITTI数据集和新的KITTI-360序列上的最佳输入配置并评估不同的网络参数,表明我们的方法在一定的基础上超越了目前最先进的方法,并证明拟议的学习计划的有效性。