The Turing mechanism describes the emergence of spatial patterns due to spontaneous symmetry breaking in reaction-diffusion processes and underlies many developmental processes. Identifying Turing mechanisms in biological systems defines a challenging problem. This paper introduces an approach to the prediction of Turing parameter values from observed Turing patterns. The parameter values correspond to a parametrized system of reaction-diffusion equations that generate Turing patterns as steady state. The Gierer-Meinhardt model with four parameters is chosen as a case study. A novel invariant pattern representation based on resistance distance histograms is employed, along with Wasserstein kernels, in order to cope with the highly variable arrangement of local pattern structure that depends on the initial conditions which are assumed to be unknown. This enables to compute physically plausible distances between patterns, to compute clusters of patterns and, above all, model parameter prediction: for small training sets, classical state-of-the-art methods including operator-valued kernels outperform neural networks that are applied to raw pattern data, whereas for large training sets the latter are more accurate. Excellent predictions are obtained for single parameter values and reasonably accurate results for jointly predicting all parameter values.


翻译:图灵机制描述由于反应扩散过程中自发对称断裂而出现的空间模式的出现,以及许多发展进程的基础。确定生物系统中的图灵机制定义了一个具有挑战性的问题。本文件介绍了从观察到的图灵模式中预测图灵参数值的方法。参数值相当于产生图灵模式稳定的图灵模式的反应-扩散方程式的准对称系统。选择了具有四个参数的Gierer-Meinhardt模型作为案例研究。采用了基于抗力距离直方图的新型异变模式,与瓦瑟斯坦内核一道,以对付高度可变的当地图案结构安排,这种安排取决于假定为未知的初始条件。这样可以计算各种模式之间的物理合理距离,以计算模式的组合,最重要的是,模型参数预测:对于小型培训组而言,典型的状态方法,包括操作者估价的内核内核超模网络,适用于原始模式数据,而对于大型培训的内核网则更为精确。为了共同预测单一的参数和合理的参数,所有精确的参数都得到了精确的预测。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
46+阅读 · 2019年10月29日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
46+阅读 · 2019年10月29日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员