We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems -- such as those presented in designing and pricing securities, constructing portfolios, and risk management -- often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory.
翻译:对于金融预测和分类方面的问题,我们探索使用深层次的学习等级模型。金融预测问题 -- -- 例如设计和定价证券、组合建设和风险管理等问题 -- -- 往往涉及庞大的数据集,这些数据集具有复杂的数据互动,目前很难或不可能在全面经济模型中具体指出。 对这些问题应用深层次的学习方法,可以产生比标准的金融方法更有用的结果。 特别是,深层次的学习可以发现和利用至少目前任何现有金融经济理论都看不到的数据中的相互作用。