The paper's goal is to provide a simple unified approach to perform sensitivity analysis using Physics-informed neural networks (PINN). The main idea lies in adding a new term in the loss function that regularizes the solution in a small neighborhood near the nominal value of the parameter of interest. The added term represents the derivative of the residual with respect to the parameter of interest. The result of this modification is a solution to the problem along with the derivative of the solution with respect to the parameter of interest (the sensitivity). We call the new technique to perform sensitivity analysis within this context SA-PINN. We show the effectiveness of the technique using 3 examples: the first one is a simple 1D advection-diffusion problem to show the methodology, the second is a 2D Poisson's problem with 9 parameters of interest and the last one is a transient two-phase flow in porous media problem.
翻译:本文的目标是提供一个简单的统一方法,利用物理知情神经网络(PINN)进行敏感度分析。主要想法在于在损失功能中添加一个新的术语,在接近利息参数名义值的小社区将解决方案正规化。添加的术语是剩余利息参数的衍生物。这一修改的结果是问题的解决办法,以及与利益参数(敏感度)解决方案的衍生物一起产生。我们称之为在这一背景下进行敏感度分析的新技术 SA-PINN。我们用3个实例展示了该技术的有效性:第一个是展示方法的简单 1D 蒸汽问题,第二个是带有9个利息参数的2D Poisson问题,最后一个是多孔媒体问题的两阶段性流动。