This paper proposes a new framework using physics-informed neural networks (PINNs) to simulate complex structural systems that consist of single and double beams based on Euler-Bernoulli and Timoshenko theory, where the double beams are connected with a Winkler foundation. In particular, forward and inverse problems for the Euler-Bernoulli and Timoshenko partial differential equations (PDEs) are solved using nondimensional equations with the physics-informed loss function. Higher-order complex beam PDEs are efficiently solved for forward problems to compute the transverse displacements and cross-sectional rotations with less than 1e-3 percent error. Furthermore, inverse problems are robustly solved to determine the unknown dimensionless model parameters and applied force in the entire space-time domain, even in the case of noisy data. The results suggest that PINNs are a promising strategy for solving problems in engineering structures and machines involving beam systems.
翻译:本文提出一个新的框架,利用物理知情神经网络(PINNs)模拟由单波束和双波波束组成的复杂结构系统,这些结构系统以Euler-Bernoulli和Timoshenko理论为基础,其中双波束与Winkler基金会相连,特别是,Euler-Bernoulli和Timoshenko部分差异方程式(PDEs)的前向和反向问题使用物理知情损失功能的非维方程式加以解决。高波波段组合PDEs被有效解决,解决了计算反向偏移和跨区旋转的远期问题,误差不到1%-3%。此外,反面问题也被有力地解决,以确定整个空间时域未知的无维模型参数和应用力,即使数据噪音也是如此。结果显示,PINNs是解决工程结构和涉及光束系统的机器问题的有希望的战略。</s>