We develop a distributed framework for the physics-informed neural networks (PINNs) based on two recent extensions, namely conservative PINNs (cPINNs) and extended PINNs (XPINNs), which employ domain decomposition in space and in time-space, respectively. This domain decomposition endows cPINNs and XPINNs with several advantages over the vanilla PINNs, such as parallelization capacity, large representation capacity, efficient hyperparameter tuning, and is particularly effective for multi-scale and multi-physics problems. Here, we present a parallel algorithm for cPINNs and XPINNs constructed with a hybrid programming model described by MPI $+$ X, where X $\in \{\text{CPUs},~\text{GPUs}\}$. The main advantage of cPINN and XPINN over the more classical data and model parallel approaches is the flexibility of optimizing all hyperparameters of each neural network separately in each subdomain. We compare the performance of distributed cPINNs and XPINNs for various forward problems, using both weak and strong scalings. Our results indicate that for space domain decomposition, cPINNs are more efficient in terms of communication cost but XPINNs provide greater flexibility as they can also handle time-domain decomposition for any differential equations, and can deal with any arbitrarily shaped complex subdomains. To this end, we also present an application of the parallel XPINN method for solving an inverse diffusion problem with variable conductivity on the United States map, using ten regions as subdomains.


翻译:我们根据两个最近的扩展,即保守的PINNs(cPINNs)和扩展的PINNs(XPINNs),为物理知情神经网络(PINNs)开发一个分布框架,分别使用空间和时空的域分解。这个域分解内含 CPINs 和 XPINNs,比香草 PINNs具有若干优势,例如平行能力、大型代表能力、高效超参数调,对于多尺度和多物理问题特别有效。在这里,我们为 CPINs和扩展的PINNs(XPNNNN) 提供了一种平行的算法,用混合的编程模型X$+$+$X, X$$@text{CPUs},{gtext{GPUs ⁇ $$。clations 和XPINNN(XPNN)相对于较经典的数据和模型平行方法的主要优势是,在每一个子领域分别优化每个复杂的神经网络的超参数。我们比较了已分发的CPN和XPNNNNNS应用的运行的功能, 和XPNPNNNNNNNNNNPs在各种前方平面的进度中也显示一种较强的动作的灵活性。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
10分钟搞懂反向传播| Neural Networks #13
AI研习社
3+阅读 · 2018年1月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
10分钟搞懂反向传播| Neural Networks #13
AI研习社
3+阅读 · 2018年1月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员