Ordinary and partial differential equations (ODEs/PDEs) play a paramount role in analyzing and simulating complex dynamic processes across all corners of science and engineering. In recent years machine learning tools are aspiring to introduce new effective ways of simulating PDEs, however existing approaches are not able to reliably return stable and accurate predictions across long temporal horizons. We aim to address this challenge by introducing an effective framework for learning infinite-dimensional operators that map random initial conditions to associated PDE solutions within a short time interval. Such latent operators can be parametrized by deep neural networks that are trained in an entirely self-supervised manner without requiring any paired input-output observations. Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained model using each prediction as the initial condition for the next evaluation step. This introduces a new approach to temporal domain decomposition that is shown to be effective in performing accurate long-time simulations for a wide range of parametric ODE and PDE systems, from wave propagation, to reaction-diffusion dynamics and stiff chemical kinetics, all at a fraction of the computational cost needed by classical numerical solvers.
翻译:普通和部分差异方程式(ODEs/PDEs)在分析和模拟科学和工程各个角落的复杂动态过程方面发挥着极为重要的作用。近年来,机器学习工具希望引入新的有效模拟PDEs的方法,但现有方法无法可靠地返回长期跨时间跨视界的稳定和准确的预测。我们的目标是通过引入一个有效的框架来应对这一挑战,学习无限的操作器,在很短的时间内将随机初始条件映射到相关的PDE解决方案中。这些潜伏操作器可以通过以完全自我监督的方式培训的深神经网络进行对称化,而无需任何配对的输入输出观测。然后,利用每一预测作为下一个评价步骤的初始条件,对经过训练的模型进行迭代性评估,从而获得一系列初步条件下的全球长期预测。这引入了一种时间域分解定位的新方法,该方法在对从波波传播到反反扩散动态和硬化化学动力学等一系列参数系统进行准确的长时间模拟方面非常有效,这些系统包括波波波波传播、反应-消融动力学和精确的化学动力学,所有这些都是经典计算成本的一部分。