Training (source) domain bias affects state-of-the-art object detectors, such as Faster R-CNN, when applied to new (target) domains. To alleviate this problem, researchers proposed various domain adaptation methods to improve object detection results in the cross-domain setting, e.g. by translating images with ground-truth labels from the source domain to the target domain using Cycle-GAN. On top of combining Cycle-GAN transformations and self-paced learning in a smart and efficient way, in this paper, we propose a novel self-paced algorithm that learns from easy to hard. Our method is simple and effective, without any overhead during inference. It uses only pseudo-labels for samples taken from the target domain, i.e. the domain adaptation is unsupervised. We conduct experiments on four cross-domain benchmarks, showing better results than the state of the art. We also perform an ablation study demonstrating the utility of each component in our framework. Additionally, we study the applicability of our framework to other object detectors. Furthermore, we compare our difficulty measure with other measures from the related literature, proving that it yields superior results and that it correlates well with the performance metric.


翻译:培训(源)领域偏向影响最新的物体探测器,例如,在应用到新的(目标)领域时,快速 R-CNN 等最先进的物体探测器。为了缓解这一问题,研究人员提出了各种领域适应方法,以改进跨域设置中的物体探测结果,例如,将源域的地面真相标签图像从源域转换到目标域,使用Cyell-GAN。除了将循环-GAN变换和自我节奏学习结合起来,在本文件中,我们提出了一种新的自我节奏算法,从易到硬学习。我们的方法简单而有效,在推断过程中不使用任何间接费用。它只对从目标域采集的样品使用伪标签,即域适应不受监督。我们在四个跨域基准上进行实验,其结果比艺术状态好。我们还进行了一项对比研究,以显示我们框架中每个组成部分的实用性。此外,我们研究了我们框架对其他物体探测器的适用性。此外,我们比较了我们的困难计量与其他测量措施与相关文献的相近度,证明它产生高性结果和精确度。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员