Face manipulation attacks have drawn the attention of biometric researchers because of their vulnerability to Face Recognition Systems (FRS). This paper proposes a novel scheme to generate Composite Face Image Attacks (CFIA) based on facial attributes using Generative Adversarial Networks (GANs). Given the face images corresponding to two unique data subjects, the proposed CFIA method will independently generate the segmented facial attributes, then blend them using transparent masks to generate the CFIA samples. We generate $526$ unique CFIA combinations of facial attributes for each pair of contributory data subjects. Extensive experiments are carried out on our newly generated CFIA dataset consisting of 1000 unique identities with 2000 bona fide samples and 526000 CFIA samples, thus resulting in an overall 528000 face image samples. {{We present a sequence of experiments to benchmark the attack potential of CFIA samples using four different automatic FRS}}. We introduced a new metric named Generalized Morphing Attack Potential (G-MAP) to benchmark the vulnerability of generated attacks on FRS effectively. Additional experiments are performed on the representative subset of the CFIA dataset to benchmark both perceptual quality and human observer response. Finally, the CFIA detection performance is benchmarked using three different single image based face Morphing Attack Detection (MAD) algorithms. The source code of the proposed method together with CFIA dataset will be made publicly available: \url{https://github.com/jagmohaniiit/LatentCompositionCode}
翻译:脸部操纵攻击已引起生物测定学家的注意,因为他们容易受到脸部识别系统(FRS)的伤害。本文提出了一个新颖的计划,根据面部特征,使用基因反对网络(GANs)生成复合脸部图像攻击(CFIA)。鉴于脸部图像与两个独特的数据主题相对应,拟议的CFIA方法将独立生成分块面部特征,然后使用透明面部面具将其混合以生成CFIA样本。我们为每对贡献数据对象生成526美元独特的CFIA面部特征组合。我们新生成的CFIA数据集(CFIA数据集由2000个真实样本和526,000 CFIA样本组成)进行了广泛的实验,从而产生了528000个脸部图像样本。我们提出了一系列实验,用四种不同的自动FRSQQQQ。我们引入了一个新的名为“通用攻击潜力”(G-MAPA)的测试,以有效衡量所引发攻击的脆弱性。还在CFIA CFIC数据集的代表子组中进行了更多的实验,以CFIA的检测质量和人类观察者法的三种标准。