This paper presents the Real-time Adaptive and Interpretable Detection (RAID) algorithm. The novel approach addresses the limitations of state-of-the-art anomaly detection methods for multivariate dynamic processes, which are restricted to detecting anomalies within the scope of the model training conditions. The RAID algorithm adapts to non-stationary effects such as data drift and change points that may not be accounted for during model development, resulting in prolonged service life. A dynamic model based on joint probability distribution handles anomalous behavior detection in a system and the root cause isolation based on adaptive process limits. RAID algorithm does not require changes to existing process automation infrastructures, making it highly deployable across different domains. Two case studies involving real dynamic system data demonstrate the benefits of the RAID algorithm, including change point adaptation, root cause isolation, and improved detection accuracy.


翻译:本文提出了Real-time Adaptive and Interpretable Detection(RAID)算法。这种新颖的方法解决了多元动态过程异常检测方法的局限性,这些局限性仅限于在模型训练条件范围内检测异常。RAID算法能够适应非平稳效应,例如数据漂移和变点,这些效应在模型开发期间可能没有被考虑到,从而延长了服务寿命。基于联合概率分布的动态模型处理系统中的异常行为检测和基于自适应过程限制的根本原因隔离。RAID算法不需要对现有过程自动化基础设施进行更改,因此可以在不同领域高度部署。两个涉及真实动态系统数据的案例研究展示了RAID算法的好处,包括变点适应性,根本原因隔离和改进的检测准确性。

0
下载
关闭预览

相关内容

独立硬盘冗余阵列RAID, Redundant Array of Independent Disks),旧称 廉价磁盘冗余阵列Redundant Array of Inexpensive Disks),简称 硬盘阵列。其基本思想就是把多个相对便宜的硬盘组合起来,成为一个硬盘阵列组,使性能达到甚至超过一个价格昂贵、容量巨大的硬盘。
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员