\textit{Intelligent Navigation Systems} (INS) are exposed to an increasing number of informational attack vectors, which often intercept through the communication channels between the INS and the transportation network during the data collecting process. To measure the resilience of INS, we use the concept of a Wardrop Non-Equilibrium Solution (WANES), which is characterized by the probabilistic outcome of learning within a bounded number of interactions. By using concentration arguments, we have discovered that any bounded feedback delaying attack only degrades the systematic performance up to order $\tilde{\mathcal{O}}(\sqrt{{d^3}{T^{-1}}})$ along the traffic flow trajectory within the Delayed Mirror Descent (DMD) online-learning framework. This degradation in performance can occur with only mild assumptions imposed. Our result implies that learning-based INS infrastructures can achieve Wardrop Non-equilibrium even when experiencing a certain period of disruption in the information structure. These findings provide valuable insights for designing defense mechanisms against possible jamming attacks across different layers of the transportation ecosystem.
翻译:智能导航系统(INS) 面临着越来越多的信息攻击,这些攻击往往通过 INS 与交通网络之间的通信通道拦截数据收集过程中。为了衡量 INS 的韧性,我们使用领域内的Wardrop非平衡解(WANES)的概念,其特征是在有限的交互次数内学习的概率结果。通过集中性论证,我们发现任何有界反馈延迟攻击只会在延迟镜像下降(DMD)在线学习框架中沿交通流轨迹降低系统性能,这种性能的下降量为 $\tilde{\mathcal{O}}(\sqrt{{d^3}{T^{-1}}})$,而这种性能下降只需要施加较为温和的假设即可出现。我们的结果意味着,在信息结构遭受一定程度干扰的情况下,基于学习的 INS 基础架构可以实现Wardrop非平衡,这些发现为跨越交通生态系统不同层面设计针对可能的干扰攻击的防御机制提供了宝贵的见解。