\textit{Intelligent Navigation Systems} (INS) are exposed to an increasing number of informational attack vectors, which often intercept through the communication channels between the INS and the transportation network during the data collecting process. To measure the resilience of INS, we use the concept of a Wardrop Non-Equilibrium Solution (WANES), which is characterized by the probabilistic outcome of learning within a bounded number of interactions. By using concentration arguments, we have discovered that any bounded feedback delaying attack only degrades the systematic performance up to order $\tilde{\mathcal{O}}(\sqrt{{d^3}{T^{-1}}})$ along the traffic flow trajectory within the Delayed Mirror Descent (DMD) online-learning framework. This degradation in performance can occur with only mild assumptions imposed. Our result implies that learning-based INS infrastructures can achieve Wardrop Non-equilibrium even when experiencing a certain period of disruption in the information structure. These findings provide valuable insights for designing defense mechanisms against possible jamming attacks across different layers of the transportation ecosystem.


翻译:智能导航系统(I​NS) 面临着越来越多的信息攻击,这些攻击往往通过 INS 与交通网络之间的通信通道拦截数据收集过程中。为了衡量 INS 的韧性,我们使用领域内的Wardrop非平衡解(WANES)的概念,其特征是在有限的交互次数内学习的概率结果。通过集中性论证,我们发现任何有界反馈延迟攻击只会在延迟镜像下降(DMD)在线学习框架中沿交通流轨迹降低系统性能,这种性能的下降量为 $\tilde{\mathcal{O}}(\sqrt{{d^3}{T^{-1}}})$​​,而这种性能下降只需要施加较为温和的假设即可出现。我们的结果意味着,在信息结构遭受一定程度干扰的情况下,基于学习的 INS 基础架构可以实现Wardrop非平衡,这些发现为跨越交通生态系统不同层面设计针对可能的干扰攻击的防御机制提供了宝贵的见解。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
61+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
手把手教你写 Dart ffi
阿里技术
0+阅读 · 2022年11月7日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
83+阅读 · 2022年7月16日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
61+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
手把手教你写 Dart ffi
阿里技术
0+阅读 · 2022年11月7日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员