The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the Adaptive Factorized Nystr\"om (AFN) preconditioner. The preconditioner is designed for the case where the rank k of the Nystr\"om approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nystr\"om approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost.
翻译:核矩阵的谱显著取决于用于定义核矩阵的核函数的参数值。这使得设计适用于不同参数值的正则化核矩阵的预处理器变得具有挑战性。本文提出了自适应因子化Nyström(AFN)预处理器。该预处理器针对Nyström近似的秩$k$较大的情况进行设计,即针对导致特征值缓慢衰减的核函数参数生成的核矩阵。AFN有意选择一个条件良好的子矩阵进行求解,并用分解的稀疏近似矩阵求逆修正Nyström近似。这使得AFN对于数值秩较大的核矩阵具有高效性。AFN还通过自适应地选择这个子矩阵的大小来平衡精度和成本。