Let $d,k$ be positive integers. We call generalized spaces the cartesian product of the $d$-dimensional sphere, $\mathbb{S}^d$, with the $k$-dimensional Euclidean space, $\mathbb{R}^k$. We consider the class ${\mathcal P}(\mathbb{S}^d \times \mathbb{R}^k)$ of continuous functions $\varphi: [-1,1] \times [0,\infty) \to \mathbb{R}$ such that the mapping $C: \left ( \mathbb{S}^d \times\mathbb{R}^k \right )^2 \to \mathbb{R}$, defined as $C \Big ( (x,y),(x^{\prime},y^{\prime})\Big ) = \varphi \Big ( \cos \theta(x,x^{\prime}), \|y-y^{\prime}\| \Big )$, $(x,y), \; (x^{\prime},y^{\prime}) \in \mathbb{S}^d \times \mathbb{R}^k$, is positive definite. We propose linear operators that allow for walks through dimension within generalized spaces while preserving positive definiteness.
翻译:$d, k$ 是正整数 。 我们称普通空间为 $$- 维域的碳酸盐产物 $mathbb{S ⁇ d$, 以 $k$- 维Euclidean 空间, $mathb{R ⁇ k$。 我们认为 $\ mathbb{S ⁇ d\ times\ mathb{R ⁇ k$ 。 连续函数的 $\ varphi : [1,1]\ times [0,\ infty]\ t\ mathb{ 至\ mathb{R} 。 我们定义的等级是 $C\ brime} (x\ prime} ma\\ precial_ prestime} (x\ prix\ pri=x} lime y\\ lime} sure(x, x\\\\ prime} (x\\\\\\\\\\ li) lix\\\\\\\\\\\\\\\\\\\\ lial=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\