We study the maximum cardinality problem of a set of few distances in the Hamming and Johnson spaces. We formulate semidefinite programs for this problem and extend the 2011 works by Barg-Musin and Musin-Nozaki. As our main result, we find new parameters for which the maximum size of two- and three-distance sets is known exactly.
翻译:我们研究Hamming和Johnson空间中几公里距离的一组最根本问题。我们为此制定了半无限期方案,并延长了Barg-Musin和Musin-Nozaki2011年的作品。我们的主要结果就是发现了新的参数,其最大尺寸为两组和三组距离。