Recovering global rankings from pairwise comparisons is an important problem with many applications, ranging from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can naturally be construed as edges in a directed graph (digraph), whose nodes represent competitors with an unknown rank or skill strength. However, existing methods addressing the rank estimation problem have thus far not utilized powerful neural network architectures to optimize ranking objectives. Hence, we propose to augment an algorithm with neural network, in particular graph neural network (GNN) for its coherence to the problem at hand. In this paper, we introduce GNNRank, a modeling framework that is compatible with any GNN capable of learning digraph embeddings, and we devise trainable objectives to encode ranking upsets/violations. This framework includes a ranking score estimation approach, and adds a useful inductive bias by unfolding the Fiedler vector computation of the graph constructed from a learnable similarity matrix. Experimental results on a wide range of data sets show that our methods attain competitive and often superior performance compared with existing approaches. It also shows promising transfer ability to new data based on the trained GNN model.


翻译:从对等比较中回收全球排名是一个重要问题,许多应用都存在问题,从时间同步到体育队排名不等。与竞争匹配相对应的对称比较自然可以被解释为定向图(地平图)中的边缘,其节点代表着排名或技能实力不明的竞争者。然而,处理排名问题的现有方法迄今尚未利用强大的神经网络结构优化排名目标。因此,我们提议增加神经网络的算法,特别是图形神经网络(GNN)与手头问题的一致性。在本文中,我们引入了GNNRank,这是一个与任何能够学习分层嵌入的GNN(G)兼容的模型框架,我们设计了可编集扰动/违规等级的可训练目标。这个框架包括一个分数估计方法,并通过对从可学习的类似矩阵中构建的图表进行纤维化矢量计算,增加了有益的导导偏差。关于一系列数据集的实验结果显示,我们的方法与现有方法相比,取得了竞争性而且往往优异的绩效。它还表明,我们有可能向以经过培训的GNNNNN模式为基础的新数据转移能力。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2021年2月4日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
35+阅读 · 2020年1月2日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2021年2月4日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
35+阅读 · 2020年1月2日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员