项目名称: 基于组合地图模型的图像检索算法研究
项目编号: No.61300071
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 王涛
作者单位: 北京交通大学
项目金额: 23万元
中文摘要: 基于对象层语义的图像检索是当前图像处理领域的一个研究热点,其中最核心的问题是如何表示图像中的对象语义及空间关系。本项目将组合地图理论引入图像表示和检索,建立基于组合地图的对象语义及空间关系表示模型,研究目标是基于视觉认知理论和拓扑不变性理论实现对象层语义的图像检索。主要内容包括:(1)基于组合地图的图像表示方法,如何利用组合地图表示对象语义及空间关系;(2)组合地图匹配算法,研究如何准确度量图像的相似性;(3)对象级图像语义自动标注问题,研究如何采用多种学习策略相融合以改善对象级语义的标注性能。本项目的特色是:(1)以海量图像为研究对象,基于组合地图理论实现图像语义的表示和检索,为从理论上改进图像表示方法、提高图像检索性能提供了基础;(2)将拓扑不变性理论、稀疏表示理论有机地融入到图像层次化语义理解中。
中文关键词: 组合地图;图像匹配;图像检索;图像标签;语义理解
英文摘要: The research of image retrieval based on objects semantic is an important issue in the area of image processing. One of the most important and fundamental problem in this issue is how to describe the objects semantic and spatial relationships. We will introduce the theory of combinatorial map into image representation and retrieval in this study, and build a model based on combinatorial maps to describe the objects semantic and spatial relationships in images.We aim to build an image retrieval system based on objects semantic with the help of the theory of vision recognition and topological invariancy. The research topics include: (1)The image representations based on combinatorial maps, how to describe object semantic and spatial relationships in images. (2)The combinatorial map matching problem, how to accurately measure the similarity of images represented by combinatorial maps. (3)The problem of auto objects semantic tagging of images, how to utilize multi-learning strategy to improve the performance of auto objects semantic tagging. The characteristics of this study are: (1)We introduce the theory of combinatorial map into representation and retrieval of mass images, which provides a theoretical basis for improving the method of image representation and enhancing the performance of image retrieval. (2)We i
英文关键词: Combinatorial map;image matching;image retrieval;image tag;semantic undstanding