Fisher Discriminant Analysis (FDA) is one of the essential tools for feature extraction and classification. In addition, it motivates the development of many improved techniques based on the FDA to adapt to different problems or data types. However, none of these approaches make use of the fact that the assumption of equal covariance matrices in FDA is usually not satisfied in practical situations. Therefore, we propose a novel classification rule for the FDA that accounts for this fact, mitigating the effect of unequal covariance matrices in the FDA. Furthermore, since we only modify the classification rule, the same can be applied to many FDA variants, improving these algorithms further. Theoretical analysis reveals that the new classification rule allows the implicit use of the class covariance matrices while increasing the number of parameters to be estimated by a small amount compared to going from FDA to Quadratic Discriminant Analysis. We illustrate our idea via experiments, which show the superior performance of the modified algorithms based on our new classification rule compared to the original ones.
翻译:渔业差异分析(FDA)是地物采掘和分类的基本工具之一,此外,它激励根据林业发展局发展许多改进技术,以适应不同的问题或数据类型,然而,这些方法都没有利用林业发展局通常在实际情况下不能满足平等共变基数的假设这一事实,因此,我们为林业发展局提出了一个新的分类规则,说明这一事实,减轻林业发展局不平等共变基数的影响。此外,由于我们只是修改分类规则,因此许多林业发展局变异体也可以适用同样的分类规则,进一步改进这些算法。理论分析表明,新的分类规则允许隐含使用类别共变基数,同时增加参数数量,比从林业发展局到夸拉蒂差异分析的估计数少。我们通过实验来说明我们的想法,实验表明根据我们新的分类规则与原始分类规则相比,经过修改的算法的优异性表现。