We consider the task of producing heatmaps from users' aggregated data while protecting their privacy. We give a differentially private (DP) algorithm for this task and demonstrate its advantages over previous algorithms on real-world datasets. Our core algorithmic primitive is a DP procedure that takes in a set of distributions and produces an output that is close in Earth Mover's Distance to the average of the inputs. We prove theoretical bounds on the error of our algorithm under a certain sparsity assumption and that these are near-optimal.
翻译:我们考虑的是从用户综合数据中得出热图的任务,同时保护他们的隐私。我们给这项任务提供了一种差别化的私人(DP)算法,并展示了它比以前在现实世界数据集中的算法的优势。我们的核心算法原始程序是一种DP程序,它以一系列分布方式进行,并产生出一种离地球移动器距离接近平均输入量的输出。我们证明,根据某种偏狭假设,我们算法的错误是理论上的,而且这些算法是接近最佳的。