Decoder-based large language models (LLMs) have shown high performance on many tasks in natural language processing. This is also true for sentence embedding learning, where a decoder-based model, PromptEOL, has achieved the best performance on semantic textual similarity (STS) tasks. However, PromptEOL makes great use of fine-tuning with a manually annotated natural language inference (NLI) dataset. We aim to improve sentence embeddings learned in an unsupervised setting by automatically generating an NLI dataset with an LLM and using it to fine-tune PromptEOL. In experiments on STS tasks, the proposed method achieved an average Spearman's rank correlation coefficient of 82.21 with respect to human evaluation, thus outperforming existing methods without using large, manually annotated datasets.
翻译:暂无翻译