Intelligent reflecting surface (IRS) can be densely deployed in complex environments to create cascaded line-of-sight (LoS) links between base stations (BSs) and users, which significantly enhance the signal coverage. In this paper, we consider the wireless power transfer (WPT) from a multi-antenna BS to multiple energy users (EUs) by exploiting the signal beam routing via multi-IRS reflections. First, we present a baseline beam routing scheme with each IRS serving at most one EU, where the BS transmits wireless power to all EUs simultaneously while the signals to different EUs undergo disjoint sets of multi-IRS reflection paths. Under this setup, we aim to tackle the joint beam routing and resource allocation optimization problem by jointly optimizing the reflection paths for all EUs, the active/passive beamforming at the BS/each involved IRS, as well as the BS's power allocation for different EUs to maximize the minimum received signal power among all EUs. Next, to further improve the WPT performance, we propose two new beam routing schemes, namely dynamic beam routing and subsurface-based beam routing, where each IRS can serve multiple EUs via different time slots and different subsurfaces, respectively. In particular, we prove that dynamic beam routing outperforms subsurface-based beam routing in terms of minimum harvested power among all EUs. In addition, we show that the optimal performance of dynamic beam routing is achieved by assigning all EUs with orthogonal time slots for WPT. A clique-based optimization approach is also proposed to solve the joint beam routing and resource allocation problems for the baseline beam routing and proposed dynamic beam routing schemes. Numerical results are finally presented, which demonstrate the superior performance of the proposed dynamic beam routing scheme to the baseline scheme.
翻译:暂无翻译