We study asymptotic statistical inference in the space of bounded functions endowed with the supremum norm over an arbitrary metric space $S$ using a novel concept: Simultaneous Confidence Probability Excursion (SCoPE) sets. Given an estimator SCoPE sets simultaneously quantify the uncertainty of several lower and upper excursion sets of a target function and thereby grant a unifying perspective on several statistical inference tools such as simultaneous confidence bands, quantification of uncertainties in level set estimation, for example, CoPE sets, and multiple hypothesis testing over $S$, for example, finding relevant differences or regions of equivalence within $S$. As a byproduct our abstract treatment allows us to refine and generalize the methodology and reduce the assumptions in recent articles in relevance and equivalence testing in functional data.
翻译:我们使用一个新概念,即:同时信任概率外移(SCOPE)数据集(SCOPE),对任意计量空间具有超常规范的封闭性功能空间进行统计推断,同时将目标功能的若干下层和上层外移的不确定性量化,从而对若干统计推断工具,如同时的置信带、定级估算中不确定性的量化(例如,COPE数据集)和超过美元等值的多重假设测试(例如,在美元范围内找到相关差异或等值区域)。作为副产品,我们的抽象处理使我们能够完善和概括方法,并减少功能数据中最近文章中的相关性和等值测试中的假设。