Applications designed for entertainment and other non-instrumental purposes are challenging to optimize because the relationships between system parameters and user experience can be unclear. Ideally, we would crowdsource these design questions, but existing approaches are geared towards evaluation or ranking discrete choices and not for optimizing over continuous parameter spaces. In addition, users are accustomed to informally expressing opinions about experiences as critiques (e.g. it's too cold, too spicy, too big), rather than giving precise feedback as an optimization algorithm would require. Unfortunately, it can be difficult to analyze qualitative feedback, especially in the context of quantitative modeling. In this article, we present collective criticism, a critiquing-based approach for modeling relationships between system parameters and subjective preferences. We transform critiques, such as "it was too easy/too challenging", into censored intervals and analyze them using interval regression. Collective criticism has several advantages over other approaches: "too much/too little"-style feedback is intuitive for users and allows us to build predictive models for the optimal parameterization of the variables being critiqued. We present two studies where we model: (i) aesthetic preferences for images generated with neural style transfer, and (ii) users' experiences of challenge in the video game Tetris. These studies demonstrate the flexibility of our approach, and show that it produces robust results that are straightforward to interpret and inline with users' stated preferences.
翻译:由于系统参数和用户经验之间的关系可能不清楚,因此,为娱乐和其他非教学目的设计的应用程序很难优化优化,因为系统参数和用户经验之间的关系可能并不明确。最理想的是,我们将大量提出这些设计问题,但现有办法旨在评价或排列离散选择,而不是优化连续参数空间。此外,用户习惯于非正式地表达对经验的看法,将其作为批评(例如,它太冷,太辣,太大),而不是提供精确的反馈,因为优化算法需要这样。不幸的是,分析质量反馈可能很困难,特别是在数量模型方面。在本篇文章中,我们提出了集体批评,一种基于滑动的办法来模拟系统参数和主观偏好之间的关系。我们把批评(例如“太容易/太有挑战性”)转化为受审查的间隔,并利用间隙回归来分析这些经验。集体批评与其他方法相比有若干好处:“太多/太少”式反馈对用户来说是直观的,并使我们能够建立预测模型,特别是在定量模型中,我们提出了一种基于直截面的基调方法,我们提出了两种研究,在模型中,我们展示了一种挑战性的研究,即我们用户展示了一种挑战性的研究,即展示了这些用户的模型,展示了我们具有挑战性的方法。