While annotating decent amounts of data to satisfy sophisticated learning models can be cost-prohibitive for many real-world applications. Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem. Some recent studies explored the potential of combining AL and SSL to better probe the unlabeled data. However, almost all these contemporary SSL-AL works use a simple combination strategy, ignoring SSL and AL's inherent relation. Further, other methods suffer from high computational costs when dealing with large-scale, high-dimensional datasets. Motivated by the industry practice of labeling data, we propose an innovative Inconsistency-based virtual aDvErsarial Active Learning (IDEAL) algorithm to further investigate SSL-AL's potential superiority and achieve mutual enhancement of AL and SSL, i.e., SSL propagates label information to unlabeled samples and provides smoothed embeddings for AL, while AL excludes samples with inconsistent predictions and considerable uncertainty for SSL. We estimate unlabeled samples' inconsistency by augmentation strategies of different granularities, including fine-grained continuous perturbation exploration and coarse-grained data transformations. Extensive experiments, in both text and image domains, validate the effectiveness of the proposed algorithm, comparing it against state-of-the-art baselines. Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
翻译:积极学习(AL)和半监督学习(SSL)是两种有效但往往孤立的手段,是缓解数据饥饿问题的手段。最近的一些研究探讨了将AL和SSL相结合以更好地探测未贴标签数据的潜力。然而,几乎所有当代SSL-AL工作都使用简单的组合战略,忽视SSLL和AL的内在关系。此外,其他方法在处理大规模、高维数据集时都存在高昂的计算成本。受标签数据行业惯例的驱动,积极学习(AL)和半监督学习(SSL)是两种有效的但往往孤立的手段。我们提出一种创新的基于不一致的虚拟DvERSarial积极学习(IDAL)算法,以进一步调查SSL和SSL的潜在优势,并实现AL和SSL(即SSL)的相互增强。SL将标签信息传播给未贴标签的样本,并为AL提供平稳的嵌入。AL在处理大规模、高维度数据集时,也存在较高的计算成本。在SSLSLL(SL)的行业做法下,我们用未贴标签的基线和相当不确定的计算方法,我们用的是,我们估计了未标定的样本在不断升级的深度的实验室中,在不断升级的图像中,我们用不同的研究中,我们估计了未标定型的样本和剖析的深度的深度的样本和剖析的深度的深度的模型。