Classical cluster inference is hampered by the spatial specificity paradox. Given the null-hypothesis of no active voxels, the alternative hypothesis states that there is at least one active voxel in a cluster. Hence, the larger the cluster the less we know about where activation in the cluster is. Rosenblatt et al. (2018) proposed a post-hoc inference method, All-resolutions Inference (ARI), that addresses this paradox by estimating the number of active voxels of any brain region. ARI allows users to choose arbitrary brain regions and returns a simultaneous lower confidence bound of the true discovery proportion (TDP) for each of them, retaining control of the family-wise error rate. ARI does not, however, guide users to regions with high enough TDP. In this paper, we propose an efficient algorithm that outputs all maximal supra-threshold clusters, for which ARI gives a TDP lower confidence bound that is at least a chosen threshold, for any number of thresholds that need not be chosen a priori nor all at once. After a preprocessing step in linearithmic time, the algorithm only takes linear time in the size of its output. We demonstrate the algorithm with an application to two fMRI datasets. For both datasets, we found several clusters whose TDP confidently meets or exceeds a given threshold in less than a second.


翻译:典型的群集推论受到空间特殊性悖论的阻碍。 鉴于没有活性肠杆菌的无效假说, 替代假设指出, 组群中至少有一个活性 voxel 。 因此, 组群越大, 组群中激活的时间就越少。 Rosenblatt et al. (2018) 提议了一个后热性推论方法, All Runt- Inference (ARI), 通过估计任何大脑区域活性肠杆菌的数量来解决这一悖论。 ARI 允许用户选择任意的大脑区域, 并同时返回它们中每个真正发现比例(TDP) 的低信任度约束, 保留对家庭错误率的控制。 然而, 组群组组组组组群越少, 越少我们知道该组群群的用户。 本文中, ARI 提出一种高效的算法, 将所有最大超峰值组群群群集都输出出一个最小的TDP 下限, 也就是至少一个选定的临界点,, 任何数目不需要事先选择, 或一次性选择的临界点, 返回一个。 在线式组组组组组组组组组组组组组组群组组组组组组组组中, 之后, 算算出两个组组组组组组组组组组组组组组组组组组组组组组组组组组组组次后,, 在两个组次中, 算出一个后,, 我们组组组组组组组组组次后, 算算算算算算算算算算算算算算算算算算算数据, 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
0+阅读 · 2022年8月16日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员