This paper proposes a flexible Bayesian approach to multiple imputation using conditional Gaussian mixtures. We introduce novel shrinkage priors for covariate-dependent mixing proportions in the mixture models to automatically select the suitable number of components used in the imputation step. We develop an efficient sampling algorithm for posterior computation and multiple imputation via Markov Chain Monte Carlo methods. The proposed method can be easily extended to the situation where the data contains not only continuous variables but also discrete variables such as binary and count values. We also propose approximate Bayesian inference for parameters defined by loss functions based on posterior predictive distributing of missing observations, by extending bootstrap-based Bayesian inference for complete data. The proposed method is demonstrated through numerical studies using simulated and real data.
翻译:本文建议采用一种灵活的贝叶斯办法,使用有条件的高斯混合物进行多种估算。我们引入了混合物模型中基于共变量的混合比例的新缩略前科,以自动选择估算步骤中使用的合适数量的组件。我们通过Markov Cain Call Monte Carlo方法为后方计算和多重估算开发了高效的抽样算法。拟议方法可以很容易地推广到数据不仅包含连续变量,而且还包含二进制和计数值等离散变量的情况。我们还提出了根据对缺失的观测的事后预测分布,通过扩大基于靴子陷阱的贝叶斯推算法对完整数据进行扩展,对损失函数界定的参数进行近似似贝叶斯推论,通过使用模拟和真实数据进行数字研究来证明拟议方法。