In this paper we present ExSpliNet, an interpretable and expressive neural network model. The model combines ideas of Kolmogorov neural networks, ensembles of probabilistic trees, and multivariate B-spline representations. We give a probabilistic interpretation of the model and show its universal approximation properties. We also discuss how it can be efficiently encoded by exploiting B-spline properties. Finally, we test the effectiveness of the proposed model on synthetic approximation problems and classical machine learning benchmark datasets.
翻译:在本文中,我们介绍了ExSpliNet, 这是一种可解释和直观的神经网络模型。该模型综合了科尔莫戈罗夫神经网络的理念、各种概率树的集合和多变量B-波纹表示。我们对模型进行概率解释,并展示其通用近似特性。我们还讨论了如何通过利用B-波纹特性有效地编码它。最后,我们测试了拟议的合成近似问题模型和经典机器学习基准数据集的有效性。