We study the concept of the continuous mean distance of a weighted graph. For connected unweighted graphs, the mean distance can be defined as the arithmetic mean of the distances between all pairs of vertices. This parameter provides a natural measure of the compactness of the graph, and has been intensively studied, together with several variants, including its version for weighted graphs. The continuous analog of the (discrete) mean distance is the mean of the distances between all pairs of points on the edges of the graph. Despite being a very natural generalization, to the best of our knowledge this concept has been barely studied, since the jump from discrete to continuous implies having to deal with an infinite number of distances, something that increases the difficulty of the parameter. In this paper we show that the continuous mean distance of a weighted graph can be computed in time quadratic in the number of edges, by two different methods that apply fundamental concepts in discrete algorithms and computational geometry. We also present structural results that allow a faster computation of this continuous parameter for several classes of weighted graphs. Finally, we study the relation between the (discrete) mean distance and its continuous counterpart, mainly focusing on the relevant question of the convergence when iteratively subdividing the edges of the weighted graph.
翻译:我们研究加权图的连续平均距离概念。 对于连接的未加权图表, 平均距离可以被定义为所有脊椎之间距离的算术平均值。 这个参数提供了图表压缩的自然量度, 并且已经与数种变量一起进行了密集研究, 包括加权图的版本。 (分异) 平均距离的连续比喻是图形边缘所有点对等点之间的距离平均值。 尽管这是一个非常自然的概括化, 但就我们所知, 这个概念很少被研究过, 因为从离散到连续, 意味着要处理无限的距离, 这会增加参数的难度。 在本文中, 我们表明, 加权图的连续平均距离可以用时间四边数来计算。 在离散算算法和计算几类加权图中, 我们用两种不同的方法来显示结构结果, 能够更快地计算出这个连续参数。 最后, 我们研究( 偏偏偏偏偏偏偏偏的) 等值的相位点之间的关系, 是在连续的平面上, 。