Minimax optimization has seen a surge in interest with the advent of modern applications such as GANs, and it is inherently more challenging than simple minimization. The difficulty is exacerbated by the training data residing at multiple edge devices or \textit{clients}, especially when these clients can have heterogeneous datasets and local computation capabilities. We propose a general federated minimax optimization framework that subsumes such settings and several existing methods like Local SGDA. We show that naive aggregation of heterogeneous local progress results in optimizing a mismatched objective function -- a phenomenon previously observed in standard federated minimization. To fix this problem, we propose normalizing the client updates by the number of local steps undertaken between successive communication rounds. We analyze the convergence of the proposed algorithm for classes of nonconvex-concave and nonconvex-nonconcave functions and characterize the impact of heterogeneous client data, partial client participation, and heterogeneous local computations. Our analysis works under more general assumptions on the intra-client noise and inter-client heterogeneity than so far considered in the literature. For all the function classes considered, we significantly improve the existing computation and communication complexity results. Experimental results support our theoretical claims.


翻译:最小最大优化已经看到随着诸如GANs等现代应用的出现而引起兴趣的激增,而且它本身比简单最小化更具挑战性。 位于多个边缘设备或\ textit{ clients} 的培训数据使困难变得更为严重, 特别是当这些客户可以拥有多种数据集和本地计算能力时。 我们提议了一个通用的最小最大优化框架, 将这种设置和本地 SGDA 等多种现有方法进行分解。 我们显示, 本地不同进展的天真的整合导致优化一个不匹配的目标功能 -- -- 一种以前在标准联合最小化中观察到的现象。 为了解决这个问题, 我们建议通过连续几轮通信中采取的本地步骤使客户更新标准化。 我们分析了非convex- concave 和非connective 功能类别的拟议算法的趋同, 并定性了混杂客户数据、 部分客户参与和本地混杂计算的影响。 我们的分析工作是在较一般的假设下进行的, 对客户内部噪音和客户间异性异性特性的计算, 而不是文献中迄今所考虑的。 对于所有功能类的计算结果, 我们大大改进了现有的计算结果。 实验。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2021年2月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员