We propose an end-to-end inverse rendering pipeline called SupeRVol that allows us to recover 3D shape and material parameters from a set of color images in a super-resolution manner. To this end, we represent both the bidirectional reflectance distribution function (BRDF) and the signed distance function (SDF) by multi-layer perceptrons. In order to obtain both the surface shape and its reflectance properties, we revert to a differentiable volume renderer with a physically based illumination model that allows us to decouple reflectance and lighting. This physical model takes into account the effect of the camera's point spread function thereby enabling a reconstruction of shape and material in a super-resolution quality. Experimental validation confirms that SupeRVol achieves state of the art performance in terms of inverse rendering quality. It generates reconstructions that are sharper than the individual input images, making this method ideally suited for 3D modeling from low-resolution imagery.
翻译:我们建议一个名为 SupeRVol 的端到端反向传输管道, 使我们能够以超分辨率的方式从一组彩色图像中恢复 3D 形状和材料参数。 为此, 我们既代表双向反射分布函数( BRDF), 也代表多层光谱的签名距离函数( SDF ) 。 为了获得表面形状及其反射特性, 我们又恢复到一个以物理为基础的照明模型, 使我们能够分解反射和照明。 这个物理模型考虑到相机点分布功能的影响, 从而能够重建超分辨率质量的形状和材料。 实验验证确认 SuperVVol 实现了艺术性能的反向性能状态 。 它产生比单个输入图像更清晰的重建, 使得这个方法适合用低分辨率图像进行 3D 建模 。</s>