The measurement of data over time and/or space is of utmost importance in a wide range of domains from engineering to physics. Devices that perform these measurements therefore need to be extremely precise to obtain correct system diagnostics and accurate predictions, consequently requiring a rigorous calibration procedure which models their errors before being employed. While the deterministic components of these errors do not represent a major modelling challenge, most of the research over the past years has focused on delivering methods that can explain and estimate the complex stochastic components of these errors. This effort has allowed to greatly improve the precision and uncertainty quantification of measurement devices but has this far not accounted for a significant stochastic noise that arises for many of these devices: vibration noise. Indeed, having filtered out physical explanations for this noise, a residual stochastic component often carries over which can drastically affect measurement precision. This component can originate from different sources, including the internal mechanics of the measurement devices as well as the movement of these devices when placed on moving objects or vehicles. To remove this disturbance from signals, this work puts forward a modelling framework for this specific type of noise and adapts the Generalized Method of Wavelet Moments to estimate these models. We deliver the asymptotic properties of this method when applied to processes that include vibration noise and show the considerable practical advantages of this approach in simulation and applied case studies.


翻译:测量时间和空间数据的过程在许多领域中都是至关重要的,从工程学到物理学都是如此。因此,测量设备需要极其精确,才能获得正确的系统诊断和准确的预测,这就需要进行严格的校准过程,以在其使用前对其误差进行建模。虽然这种误差的确定性成分不构成主要的建模难题,但过去几年的大部分研究重心是提供能够解释和估计这种误差的复杂随机成分的方法。这项工作使得测量设备的精度和不确定性量化得以大大提高,但是这一方法迄今还没有考虑到原因在于许多设备产生的一种重要随机噪声:振动噪声。事实上,在过滤掉了这种噪声的物理解释后,通常会残留出一个会严重影响测量精度的随机成分。这个成分可能来自不同的源,包括测量设备的内部机械结构以及放置在移动物体或车辆上时这些设备的移动。为了从信号中去除这种干扰,本文提出了一种针对特定噪声类型的建模框架,并将广义小波矩方法改进为用于估计这些模型的方法。我们给出这种方法应用于包括振动噪声的过程时的渐近性质,并展示了这种方法在模拟和应用案例研究中的显著实际优势。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员