We consider the problem where $N$ agents collaboratively interact with an instance of a stochastic $K$ arm bandit problem for $K \gg N$. The agents aim to simultaneously minimize the cumulative regret over all the agents for a total of $T$ time steps, the number of communication rounds, and the number of bits in each communication round. We present Limited Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch based algorithm where each agent communicates only after the end of the epoch and shares the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a regret of $\tilde{O}\left(\sqrt{({K/N}+ N)T}\right)$, communicates for $O(\log T)$ steps and broadcasts $O(\log K)$ bits in each communication step. We extend the work to sparse graphs with maximum degree $K_G$, and diameter $D$ and propose LCC-UCB-GRAPH which enjoys a regret bound of $\tilde{O}\left(D\sqrt{(K/N+ K_G)DT}\right)$. Finally, we empirically show that the LCC-UCB and the LCC-UCB-GRAPH algorithm perform well and outperform strategies that communicate through a central node
翻译:我们考虑的问题是,美元代理商与一个以美元为美元、美元为美元、美元为美元、美元为美元、通信周期的数量和每轮通信中的位数,同时将所有代理商累积的遗憾降到最低,总共为美元时间步骤、通信回合的数量和每轮通信中的位数。我们展示了有限通信协作-高信任圈(LCC-UB),这是一种基于双时代的算法,其中每个代理商仅在危机结束后才进行通信,并分享所知道的最佳臂的指数。根据我们的算法,LCC-UCB,每个代理商都享有对美元-美元左翼(sqrt{{K/NQ_NQ_Right)的遗憾,以美元进行通信合作-高信任圈(LCC-K),并在每通信步骤中播放美元(O)比特。我们把工作扩大到以最高K_G美元和直径的稀薄图表,并提议LCC-CBARB-GRAPH, 以美元为美元/CRAP_O_BRF_C_C_C_G_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_B_B_LD_B_B_B_C_C_B_C_B_B_B_C_B_B_B_B_B_B_B_B_B_C_B_C_B_B_B_C_C_B_B_C_C_C_C_C_B_B_B_C_C_C_C_C_C_C_C_C_C_B_B_B_B_B_B_B_B_B_B_B_B_B_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_B_C_C_B_B_B_C_C_B_B_B_B_B_B_C_C_C_C_C_C_C_C_C_C_C_B_B_C_C_C_C_C_C_