In this work we extend and generalise an iterative approach, introduced by Cirillo and Hormann (2018) for the Floater-Hormann family of interpolants, to construct an Hermite interpolant for general interpolant with basis functions which satisfy a Lagrange property. In particular, we apply this scheme to produce an effective barycentric rational trigonometric Hermite interpolant using the basis functions of the trigonometric interpolant introduced by Berrut (1988). Moreover, in order to give an easy construction of such an interpolant we compute analytically the differentation matrix and we conclude with various examples and a numerical study of the rate of convergence at equidistant nodes.
翻译:在这项工作中,我们推广并概括了Cirillo和Hormann(2018年)为Floater-Hormann的跨大西洋家族提出的一种迭代办法,即为一般的跨大西洋的Hermite Interporats, 其基础功能满足了拉革兰地产,特别是,我们运用这个办法,利用Berrut(1988年)提出的三角测量内游线的基本功能,形成一个有效的以巴里中心为中心的合理三维赫米特的相互影响。此外,为了方便地构建这种相互影响的范围,我们用分析方式计算了不同的矩阵,并以各种实例和数字研究来结束对等地节点的趋同率进行的数字研究。