Quality assessment algorithms can be used to estimate the utility of a biometric sample for the purpose of biometric recognition. "Error versus Discard Characteristic" (EDC) plots, and "partial Area Under Curve" (pAUC) values of curves therein, are generally used by researchers to evaluate the predictive performance of such quality assessment algorithms. An EDC curve depends on an error type such as the "False Non Match Rate" (FNMR), a quality assessment algorithm, a biometric recognition system, a set of comparisons each corresponding to a biometric sample pair, and a comparison score threshold corresponding to a starting error. To compute an EDC curve, comparisons are progressively discarded based on the associated samples' lowest quality scores, and the error is computed for the remaining comparisons. Additionally, a discard fraction limit or range must be selected to compute pAUC values, which can then be used to quantitatively rank quality assessment algorithms. This paper discusses and analyses various details for this kind of quality assessment algorithm evaluation, including general EDC properties, interpretability improvements for pAUC values based on a hard lower error limit and a soft upper error limit, the use of relative instead of discrete rankings, stepwise vs. linear curve interpolation, and normalisation of quality scores to a [0, 100] integer range. We also analyse the stability of quantitative quality assessment algorithm rankings based on pAUC values across varying pAUC discard fraction limits and starting errors, concluding that higher pAUC discard fraction limits should be preferred. The analyses are conducted both with synthetic data and with real data for a face image quality assessment scenario, with a focus on general modality-independent conclusions for EDC evaluations.
翻译:质量评估算法可用于估计生物特征样本在生物特征识别中的效用。研究人员通常使用“错误率与抛弃率曲线”(EDC)图和其中曲线的“部分曲线下面积”(pAUC)值来评估这种质量评估算法的预测性能。EDC曲线取决于错误类型(例如“错误拒绝率”(FNMR))、质量评估算法、一种生物特征识别系统、一组对应于生物特征样本对的比较以及相应的比较分数阈值。为计算EDC曲线,比较是基于与相关样本最低质量分数相关的递归抛弃,然后计算其余比较的误差。此外,必须选 择抛弃比例限制或范围来计算pAUC值,然后可用于定量排名质量评估算法。本文讨论和分析了这种质量评估算法评估的各种细节问题,包括EDC的一般属性、 基于硬下限误差和软上限误差的pAUC值的可解释性改进、相对而非离散排名的使用、逐步与线性曲线插值、质量分数归一化到0到100整数范围内等。我们还分析了在不同的pAUC抛弃比例限制和起始误差下,基于pAUC值的定量质量评估算法排名的稳定性,并得出结论应选择较高的pAUC抛弃比例限制。这些分析是在合成数据和面部图像质量评估情景的真实数据下进行的,并关注EDC评估的与模态无关的一般结论。