The Min-Hashing approach to sketching has become an important tool in data analysis, search, and classification. To apply it to real-valued datasets, the ICWS algorithm has become a seminal approach that is widely used, and provides state-of-the-art performance for this problem space. However, ICWS suffers a computational burden as the sketch size K increases. We develop a new Simplified approach to the ICWS algorithm, that enables us to obtain over 20x speedups compared to the standard algorithm. The veracity of our approach is demonstrated empirically on multiple datasets, showing that our new Simplified CWS obtains the same quality of results while being an order of magnitude faster.
翻译:草图绘制的“ 最小” 方法已成为数据分析、搜索和分类的一个重要工具。 为了将其应用到实际估价的数据集中, ICWS 算法已经成为一种开创性方法,被广泛使用,为问题空间提供了最先进的性能。 然而,随着草图大小K的增大,ICWS 也承受着计算负担。 我们开发了一种新的简化方法,用于ICWS 算法,这使我们能够获得与标准算法相比的20倍以上的超速。 我们方法的真实性在多个数据集上得到了经验性的证明,表明我们新的简化的 CWS 获得了同样质量的结果,而其规模则更快。