In distributed multi-agent systems, correctness is often entangled with operational policies such as scheduling, batching, or routing, which makes systems brittle since performance-driven policy evolution may break integrity guarantees. This paper introduces the Deterministic Causal Structure (DCS), a formal foundation that decouples correctness from policy. We develop a minimal axiomatic theory and prove four results: existence and uniqueness, policy-agnostic invariance, observational equivalence, and axiom minimality. These results show that DCS resolves causal ambiguities that value-centric convergence models such as CRDTs cannot address, and that removing any axiom collapses determinism into ambiguity. DCS thus emerges as a boundary principle of asynchronous computation, analogous to CAP and FLP: correctness is preserved only within the expressive power of a join-semilattice. All guarantees are established by axioms and proofs, with only minimal illustrative constructions included to aid intuition. This work establishes correctness as a fixed, policy-agnostic substrate, a Correctness-as-a-Chassis paradigm, on which distributed intelligent systems can be built modularly, safely, and evolvably.
翻译:暂无翻译