Can we construct a neural model that is inductively biased towards learning human languages? Motivated by this question, we aim at constructing an informative prior over neural weights, in order to adapt quickly to held-out languages in the task of character-level language modeling. We infer this distribution from a sample of typologically diverse training languages via Laplace approximation. The use of such a prior outperforms baseline models with an uninformative prior (so-called "fine-tuning") in both zero-shot and few-shot settings. This shows that the prior is imbued with universal phonological knowledge. Moreover, we harness additional language-specific side information as distant supervision for held-out languages. Specifically, we condition language models on features from typological databases, by concatenating them to hidden states or generating weights with hyper-networks. These features appear beneficial in the few-shot setting, but not in the zero-shot setting. Since the paucity of digital texts affects the majority of the world's languages, we hope that these findings will help broaden the scope of applications for language technology.


翻译:我们能否构建一个偏向于学习人类语言的神经模型? 由这一问题驱动,我们的目标是构建一个信息性先于神经重量的神经模型,以便迅速适应在品格层面语言模型任务中被搁置的语言。 我们通过Laplace近似(Laplace press)从典型多样培训语言样本中推断出这种分布。 使用这种先于优异的基线模型,在零点和微点设置中都使用不提供信息性先验( 所谓的“ 微调 ” ) 。 这表明前一种信息含有普遍的感官学知识。 此外,我们利用额外的特定语言的侧面信息来远程监督被搁置的语言。 具体地说,我们将类型数据库的特征作为语言模型的条件,将其配置为隐蔽状态或生成超强网络的重量。 这些特征在微点设置中似乎是有益的,但并非零点设置。 由于数字文本的匮乏影响世界语言的大多数,我们希望这些发现将有助于扩大语言技术的应用范围。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
52+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Arxiv
6+阅读 · 2021年3月30日
Arxiv
6+阅读 · 2019年7月11日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员