Short text classification is one of important tasks in Natural Language Processing (NLP). Unlike paragraphs or documents, short texts are more ambiguous since they have not enough contextual information, which poses a great challenge for classification. In this paper, we retrieve knowledge from external knowledge source to enhance the semantic representation of short texts. We take conceptual information as a kind of knowledge and incorporate it into deep neural networks. For the purpose of measuring the importance of knowledge, we introduce attention mechanisms and propose deep Short Text Classification with Knowledge powered Attention (STCKA). We utilize Concept towards Short Text (C- ST) attention and Concept towards Concept Set (C-CS) attention to acquire the weight of concepts from two aspects. And we classify a short text with the help of conceptual information. Unlike traditional approaches, our model acts like a human being who has intrinsic ability to make decisions based on observation (i.e., training data for machines) and pays more attention to important knowledge. We also conduct extensive experiments on four public datasets for different tasks. The experimental results and case studies show that our model outperforms the state-of-the-art methods, justifying the effectiveness of knowledge powered attention.


翻译:短文本分类是自然语言处理(NLP)的重要任务之一。 与段落或文件不同,短文本更为模糊,因为它们没有足够的背景信息,对分类构成巨大挑战。在本文中,我们从外部知识来源获取知识,以加强短文本的语义表达方式。我们把概念信息作为一种知识,并将其纳入深层神经网络。为了衡量知识的重要性,我们引入关注机制,并提议有知识关注的深度短文本分类(STCKA)。我们利用短文本概念关注和概念集概念集的概念,从两个方面获得概念集的份量。我们用概念信息对短文本进行分类。与传统方法不同,我们将短文本分类,我们的行为模式如人类具有内在能力,能够根据观察(即机器培训数据)作出决定,并更多地关注重要知识。我们还对四个公共数据集进行了广泛的实验,用于不同任务。实验结果和案例研究表明,我们的模型不符合最新方法,说明知识引人注意的有效性。

8
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
6+阅读 · 2019年9月4日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员