We develop a predictive inference procedure that combines conformal prediction (CP) with unconditional quantile regression (QR) -- a commonly used tool in econometrics that involves regressing the recentered influence function (RIF) of the quantile functional over input covariates. Unlike the more widely-known conditional QR, unconditional QR explicitly captures the impact of changes in covariate distribution on the quantiles of the marginal distribution of outcomes. Leveraging this property, our procedure issues adaptive predictive intervals with localized frequentist coverage guarantees. It operates by fitting a machine learning model for the RIFs using training data, and then applying the CP procedure for any test covariate with respect to a ``hypothetical'' covariate distribution localized around the new instance. Experiments show that our procedure is adaptive to heteroscedasticity, provides transparent coverage guarantees that are relevant to the test instance at hand, and performs competitively with existing methods in terms of efficiency.
翻译:我们开发了一种预测推断程序,将一致性预测(CP)与无条件分位数回归(QR)结合起来,QR是计量经济学中常用的工具,涉及在输入协变量上回归量化功能的重新中心化影响函数(RIF)。与更为广为人知的条件QR不同,无条件QR明确捕捉协变量分布变化对结果边际分布的分位数的影响。利用这个特性,我们的程序发出带有局部频率覆盖保证的自适应预测间隔。它通过使用训练数据拟合RIF的机器学习模型来操作,并随后对于一个“假设”以测试实例为中心的协变量分布,应用CP程序。实验证明,我们的程序对异方差具有自适应性,提供了与测试实例相关的透明覆盖保证,并在效率方面表现竞争力。