We propose an automatic COVID1-19 diagnosis framework from lung CT-scan slice images using double BERT feature extraction. In the first BERT feature extraction, A 3D-CNN is first used to extract CNN internal feature maps. Instead of using the global average pooling, a late BERT temporal pooing is used to aggregate the temporal information in these feature maps, followed by a classification layer. This 3D-CNN-BERT classification network is first trained on sampled fixed number of slice images from every original CT scan volume. In the second stage, the 3D-CNN-BERT embedding features are extracted on all slice images of every CT scan volume, and these features are averaged into a fixed number of segments. Then another BERT network is used to aggregate these multiple features into a single feature followed by another classification layer. The classification results of both stages are combined to generate final outputs. On the validation dataset, we achieve macro F1 score of 0.9164.
翻译:我们建议使用双倍BERT特征提取法,从肺部CT扫描切片图像中建立自动的COVID1-19诊断框架。在第一次BERT特征提取法中,A 3D-CNN首先用于提取CNN内部特征图。不是使用全球平均集合法,而是使用较晚的BERT时间拖网来汇总这些特征图中的时间信息,然后是分类层。这个 3D-CNN-BERT分类网络首先就每个原CT扫描卷的切片图像的抽样固定数量进行了培训。在第二阶段,每个CT扫描卷的所有切片图像中都提取了3D-CNN-BERT嵌入特征,这些特征被平均纳入一个固定部分。然后,另一个BERT网络将这些多重特征汇总成一个单一特征,然后是另一个分类层。两个阶段的分类结果将合并成最后产出。在验证数据集中,我们得出了0.9164的宏观F1分。