Deep Learning systems have achieved great success in the past few years, even surpassing human intelligence in several cases. As of late, they have also established themselves in the biomedical and healthcare domains, where they have shown a lot of promise, but have not yet achieved widespread adoption. This is in part due to the fact that most methods fail to maintain their performance when they are called to make decisions on data that originate from a different distribution than the one they were trained on, namely Out-Of-Distribution (OOD) data. For example, in the case of biosignal classification, models often fail to generalize well on datasets from different hospitals, due to the distribution discrepancy amongst different sources of data. Our goal is to demonstrate the Domain Generalization problem present between distinct hospital databases and propose a method that classifies abnormalities on 12-lead Electrocardiograms (ECGs), by leveraging information extracted across the architecture of a Deep Neural Network, and capturing the underlying structure of the signal. To this end, we adopt a ResNet-18 as the backbone model and extract features from several intermediate convolutional layers of the network. To evaluate our method, we adopt publicly available ECG datasets from four sources and handle them as separate domains. To simulate the distributional shift present in real-world settings, we train our model on a subset of the domains and leave-out the remaining ones. We then evaluate our model both on the data present at training time (intra-distribution) and the held-out data (out-of-distribution), achieving promising results and surpassing the baseline of a vanilla Residual Network in most of the cases.


翻译:深海学习系统在过去几年里取得了巨大成功,甚至在若干情况下甚至超过了人类智能。最近,它们还在生物医学和医疗领域建立了自我定位,它们在这方面表现出了很大的希望,但还没有被广泛采用。部分原因是,大多数方法未能保持其性能,因为大多数方法在被要求对源自与它们所培训的数据,即“Out-OD(OOOD)”数据的不同分布数据作出决定时,无法保持其性能。例如,在生物信号分类方面,由于不同数据来源之间的分布差异,模型往往无法对不同医院的数据集进行概括化。我们的目标是展示不同医院数据库之间存在的多功能化问题,并提出一种方法,通过利用从深神经网络结构中提取的信息,即“ODOD(OD)”数据,并获取信号的基本结构。为此,我们采用了ResNet-18(ResNet-18)作为离线模型的基础模型,并提取了来自不同医院的中间剖析层数据,因为不同数据来源之间的分布差异。我们的目标是,为了评估不同的医院数据库之间存在的多层次,我们采用一种可公开使用的方法,在目前使用的ECG数据流数据流数据流数据流数据流数据流数据流数据流中,我们在数据库中,我们使用一种可操作。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
46+阅读 · 2022年10月2日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
46+阅读 · 2022年10月2日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员