Mixed membership models, or partial membership models, are a flexible unsupervised learning method that allows each observation to belong to multiple clusters. In this paper, we propose a Bayesian mixed membership model for functional data. By using the multivariate Karhunen-Lo\`eve theorem, we are able to derive a scalable representation of Gaussian processes that maintains data-driven learning of the covariance structure. Within this framework, we establish conditional posterior consistency given a known feature allocation matrix. Compared to previous work on mixed membership models, our proposal allows for increased modeling flexibility, with the benefit of a directly interpretable mean and covariance structure. Our work is motivated by studies in functional brain imaging through electroencephalography (EEG) of children with autism spectrum disorder (ASD). In this context, our work formalizes the clinical notion of "spectrum" in terms of feature membership proportions.
翻译:混合会籍模式,即部分会籍模式,是一种灵活而不受监督的学习方法,允许每个观察都属于多个组群。在本文件中,我们提议了一种巴伊西亚混合会籍模式,用于功能数据。通过多变量Karhunen-Lo<unk> <unk> éeve 理论,我们可以得出一个可扩缩的Gaussian进程,以维持数据驱动的对共变结构的学习。在这个框架内,我们根据已知的特征分配矩阵,建立了有条件的后世一致性。与以前关于混合会籍模式的工作相比,我们的提案允许增加模型的灵活性,并有利于一种可直接解释的中性和共性结构。我们的工作受到通过对患有自闭症谱系障碍的儿童的电脑成像学(EEEEG)研究的推动。在这方面,我们的工作将特征成员比例的“特征特征”的临床概念正式化。</s>