The approximate uniform sampling of graphs with a given degree sequence is a well-known, extensively studied problem in theoretical computer science and has significant applications, e.g., in the analysis of social networks. In this work we study an extension of the problem, where degree intervals are specified rather than a single degree sequence. We are interested in sampling and counting graphs whose degree sequences satisfy the degree interval constraints. A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed. In this work, we provide the first fully polynomial almost uniform sampler (FPAUS) as well as the first fully polynomial randomized approximation scheme (FPRAS) for sampling and counting, respectively, graphs with near-regular degree intervals, in which every node $i$ has a degree from an interval not too far away from a given $d \in \N$. In order to design our FPAUS, we rely on various state-of-the-art tools from Markov chain theory and combinatorics. In particular, we provide the first non-trivial algorithmic application of a breakthrough result of Liebenau and Wormald (2017) regarding an asymptotic formula for the number of graphs with a given near-regular degree sequence. Furthermore, we also make use of the recent breakthrough of Anari et al. (2019) on sampling a base of a matroid under a strongly log-concave probability distribution. As a more direct approach, we also study a natural Markov chain recently introduced by Rechner, Strowick and M\"uller-Hannemann (2018), based on three simple local operations: Switches, hinge flips, and additions/deletions of a single edge. We obtain the first theoretical results for this Markov chain by showing it is rapidly mixing for the case of near-regular degree intervals of size at most one.
翻译:具有一定度序列的图表的大致统一抽样是一个众所周知的、广泛研究过的理论计算机科学问题,并具有重要的应用,例如在分析社交网络方面。在这项工作中,我们研究问题的延伸,其中指定了度间隔,而不是单一度序列。我们有兴趣抽样和计算其度序列满足度间隔限制的图表。产生这一问题的自然情景是在仅部分观测到的社会网络上进行假设测试。在这项工作中,我们提供了第一个完全多元性几乎统一的理论采样器(FPAUS)以及第一个完全多元性随机近似方案(FPRAS),分别用于取样和计算近定期间距的图表。我们研究这一问题的延伸,其中每个节点在距离给定的 $d = =N$ 的间隔不远的间隔中都有一定的度。为了设计我们的数据元数据,我们依靠来自Markov 链论理论和调序法的状态工具。特别是,我们提供了最近第一次非三端随机随机随机随机随机近位的近端随机直位近额的图表, 也通过直序的直径直径直径的直径直径直径直径直值的正的直径直径直径直径流流流流流流流流流的直径直径直径, 。