Traffic systems are multi-agent cyber-physical systems whose performance is closely related to human welfare. They work in open environments and are subject to uncertainties from various sources, making their performance hard to verify by traditional model-based approaches. Alternatively, statistical model checking (SMC) can verify their performance by sequentially drawing sample data until the correctness of a performance specification can be inferred with desired statistical accuracy. This work aims to verify traffic systems with privacy, motivated by the fact that the data used may include personal information (e.g., daily itinerary) and get leaked unintendedly by observing the execution of the SMC algorithm. To formally capture data privacy in SMC, we introduce the concept of expected differential privacy (EDP), which constrains how much the algorithm execution can change in the expectation sense when data change. Accordingly, we introduce an exponential randomization mechanism for the SMC algorithm to achieve the EDP. Our case study on traffic intersections by Vissim simulation shows the high accuracy of SMC in traffic model verification without significantly sacrificing computing efficiency. The case study also shows EDP successfully bounding the algorithm outputs to guarantee privacy.


翻译:交通量系统是多试剂网络物理系统,其性能与人类福祉密切相关,在开放环境中工作,受到各种来源的不确定性的影响,使得其性能难以通过传统的模型方法加以核实;或者,统计模型检查(SMC)可以通过按顺序绘制抽样数据来核查其性能,直到用预期的统计准确性推断出性能规格的正确性;这项工作旨在以保密的方式核查交通系统,其动机是,所使用数据可能包括个人信息(例如,每日行程),而通过观察SMC算法的执行而意外泄漏。为了在SMC中正式获取数据隐私,我们引入了预期的差别隐私概念(EDP),这限制了在数据变化时算法执行在预期意义上的改变。因此,我们引入了一个指数随机化机制,用于SMC算法实现EDP。我们通过Vismim模拟对交通交叉点的案例研究表明,SMC在交通模型核查中具有很高的准确性能,而不会大大降低计算效率。案例研究还表明,EDP成功地将算法产出约束到保证隐私。

0
下载
关闭预览

相关内容

SMC:IEEE International Conference on Systems,Man, and Cybernetics Explanation:IEEE系统、人与控制论国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/smc/
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员