A typical approach to creating complex robot behaviors is to compose atomic controllers, or skills, such that the resulting behavior satisfies a high-level task; however, when a task cannot be accomplished with a given set of skills, it is difficult to know how to modify the skills to make the task possible. We present a method for combining symbolic repair with physical feasibility-checking and implementation to automatically modify existing skills such that the robot can execute a previously infeasible task. We encode robot skills in Linear Temporal Logic (LTL) formulas that capture both safety constraints and goals for reactive tasks. Furthermore, our encoding captures the full skill execution, as opposed to prior work where only the state of the world before and after the skill is executed are considered. Our repair algorithm suggests symbolic modifications, then attempts to physically implement the suggestions by modifying the original skills subject to LTL constraints derived from the symbolic repair. If skills are not physically possible, we automatically provide additional constraints for the symbolic repair. We demonstrate our approach with a Baxter and a Clearpath Jackal.
翻译:创建复杂的机器人行为的典型方法是组成原子控制器或技能,使由此产生的行为符合一项高层次的任务;然而,当一项任务无法用一套特定技能完成时,很难知道如何修改技能以使任务成为可能。我们提出了一个方法,将象征性的修复与物理可行性检查和实施结合起来,以便自动修改现有技能,使机器人能够执行以前不可行的任务。我们把机器人的技能编码为线形时空逻辑(LTL)公式,该公式既能捕捉安全限制,又能捕捉反应性任务的目标。此外,我们的编码还记录了全部技能执行,而不是以前只考虑技能执行之前和之后的世界状况的工作。我们的修理算法建议进行象征性的修改,然后试图实际执行建议,修改原技能,但受LTL的制约,从象征性的修理中得出。如果技能无法实际操作,我们就自动为象征性的修理提供额外的限制。我们用巴克斯特和明确路口的Jackal展示了我们的方法。