We present a novel framework for specifying and verifying correctness globally for neural networks on perception tasks. Most previous works on neural network verification for perception tasks focus on robustness verification. Unlike robustness verification, which aims to verify that the prediction of a network is stable in some local regions around labelled points, our framework provides a way to specify correctness globally in the whole target input space and verify that the network is correct for all target inputs (or find the regions where the network is not correct). We provide a specification through 1) a state space consisting of all relevant states of the world and 2) an observation process that produces neural network inputs from the states of the world. Tiling the state and input spaces with a finite number of tiles, obtaining ground truth bounds from the state tiles and network output bounds from the input tiles, then comparing the ground truth and network output bounds delivers an upper bound on the network output error for any inputs of interest. The presented framework also enables detecting illegal inputs -- inputs that are not contained in (or close to) the target input space as defined by the state space and observation process (the neural network is not designed to work on them), so that we can flag when we don't have guarantees. Results from two case studies highlight the ability of our technique to verify error bounds over the whole target input space and show how the error bounds vary over the state and input spaces.
翻译:我们为全球神经网络的感知任务提供了一个新的框架,用于具体确定和核查全球神经网络的正确性; 以往关于神经网络对感知任务核查的大部分工作都侧重于稳健度核查; 与旨在核查网络预测在贴标签点周围某些地方区域是否稳定的稳妥度的稳健性核查不同, 我们的框架提供了一个方法, 在整个目标输入空间( 或找到网络不正确的区域) 中具体说明网络是否准确性, 并核实网络对所有目标输入( 或找到网络不正确的区域) 的正确性; 我们通过 1 提供一个规格, 一个由世界所有相关国家组成的州空间; 2 一个观测进程, 产生神经网络的投入来自世界各个州; 将状态和输入空间与数量有限的砖块连接起来, 获取来自州砖块和网络输出的地面真相界限, 然后比较地面真相和网络输出界限, 在所有目标输入空间输入错误上有一个上上限。 我们提出的框架还能够检测非法输入( 或接近) 由国家空间和观察进程定义的目标输入空间空间空间空间空间( 神经网络不是设计用来测量的), 从而显示我们对空间输入能力进行约束性研究时, 显示我们对结果的准确性研究的能力如何约束性地显示。