Facility location problems have been a major research area of interest in the last several decades. In particular, uncapacitated location problems (ULP) have enormous applications. Variations of ULP often appear, especially as large-scale subproblems in more complex combinatorial optimization problems. Although many researchers have studied different versions of ULP (e.g., uncapacitated facility location problem (UCFLP) and p-Median problem), most of these authors have considered small to moderately sized problems. In this paper, we address the ULP and provide a fast adaptive meta-heuristic for large-scale problems. The approach is based on critical event memory tabu search. For the diversification component of the algorithm, we have chosen a procedure based on a sequencing problem commonly used for traveling salesman-type problems. The efficacy of this approach is evaluated across a diverse range of benchmark problems sourced from the Internet, with a comprehensive comparison against four prominent algorithms in the literature. The proposed adaptive critical event tabu search (ACETS) demonstrates remarkable effectiveness for large-scale problems. The algorithm successfully solved all problems optimally within a short computing time. Notably, ACETS discovered three best new solutions for benchmark problems, specifically for Asymmetric 500A-1, Asymmetric 750A-1, and Symmetric 750B-4, underscoring its innovative and robust nature.
翻译:暂无翻译