Through in-context learning (ICL), large-scale language models are effective few-shot learners without additional model fine-tuning. However, the ICL performance does not scale well with the number of available training samples as it is limited by the inherent input length constraint of the underlying language model. Meanwhile, many studies have revealed that language models are also powerful feature extractors, allowing them to be utilized in a black-box manner and enabling the linear probing paradigm, where lightweight discriminators are trained on top of the pre-extracted input representations. This paper proposes prompt-augmented linear probing (PALP), a hybrid of linear probing and ICL, which leverages the best of both worlds. PALP inherits the scalability of linear probing and the capability of enforcing language models to derive more meaningful representations via tailoring input into a more conceivable form. Throughout in-depth investigations on various datasets, we verified that PALP significantly enhances the input representations closing the gap between ICL in the data-hungry scenario and fine-tuning in the data-abundant scenario with little training overhead, potentially making PALP a strong alternative in a black-box scenario.
翻译:通过文字内学习(ICL),大规模语言模型是有效的少见学习者,没有额外的模型微调,但是,ICL的绩效与现有培训样本的数量相比并不大,因为它受到基本语言模型固有的投入长度限制的限制;同时,许多研究显示,语言模型也是强大的特征提取器,能够以黑盒方式加以利用,并能够使线性测试模式成为线性测试器,在预抽取输入的演示中,轻量级歧视者得到培训。本文建议快速推荐线性线性探测(PALP),即线性探测和ICL的混合体,利用两个世界的最佳条件。 PALP继承了线性探测的可扩展性,以及执行语言模型的能力,以便通过将投入调整成一种更可行的形式来得出更有意义的表述。在对各种数据集进行深入的调查中,我们核实PALP大大加强了输入性描述器,缩小了ICL在数据饥饿假设中的差距,在数据内进行精确的黑度假设中进行微调,可能使PALPBORP箱式假设成为一种强有力的替代。