项目名称: Al基金属氧化物催化臭氧降解水中有机物机理理论研究

项目编号: No.21303030

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 周欣

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 近年来金属氧化物催化臭氧降解水中有机物受到了广泛关注,但反应环境复杂及缺乏有效检测手段导致其催化机理不清晰。为解决目前实验机理研究存疑的问题,本项目拟以密度泛函理论(DFT)方法为研究手段,以具有不同催化活性且催化机理存在争议的γ-Al2O3和γ-AlOOH为催化剂模型,以相对氧化铝表面具有不同吸附能力的水中典型难降解有机物草酸和苯酚为待降解有机分子,通过建立固-液界面模型,探讨水、臭氧和有机分子在界面竞争吸附关系,模拟羟基自由基生成及有机分子分解过程,揭示表面水合结构、固-液界面作用和表面羟基形态对反应机理的影响因素。利用从头算分子动力学模拟两种金属氧化物催化臭氧降解有机分子过程,将其结果与DFT机理互相印证,寻找可能存在的新反应途径。本研究将为实验寻找、设计新型高效催化剂、增加臭氧使用效率提供理论依据,也可为今后多相催化臭氧机理模拟提供合理的理论模型。

中文关键词: 催化臭氧化机理;金属氧化物;密度泛函计算;固-液反应;竞争吸附

英文摘要: Catalytic ozonation by metal oxide has recently gained significant attention as an effective process used for the removal of organics from water; however, their catalytic mechanisms are still largely unknown due to the deficiencies of detection means and complicated environments in water. To solve the doubted question raised by experimental mechanism investigation, in this project, extensive calculations based on density functional theory (DFT) method are explored to reveal the mechanism of catalytic ozonation of oxalate and phenyl by γ-Al2O3 and γ-AlOOH. Through establishing solid-liquid interface model, the competition behavior of water, ozone, and organic molecules adsorbed on the metal-oxide surface is investigated, the mechanisms of generation of hydroxyl radical and decomposition of organic molecules are elaborated, and the role that surface hydrated structure, solid-liquid interaction, and shape of surface hydroxyl group played towards the change of reaction mechanism is explored in detail. The catalytic process is modeled by Ab-initio MD method, the results of which will be compared with that of DFT to search and validate new reaction route. The successful implement of this project will not only elucidate long-standing puzzles on the catalytic ozonation mechanism of metal oxide, but provide theoretical s

英文关键词: mechanism of ozonation;metal oxide;DFT calculation;solid-liquid interaction;competitive adsorption

成为VIP会员查看完整内容
0

相关内容

《人工智能在化学领域的应用全景》白皮书
专知会员服务
36+阅读 · 2022年1月22日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
数据资产化前瞻性研究白皮书
专知会员服务
46+阅读 · 2021年11月19日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
47+阅读 · 2021年5月17日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
221+阅读 · 2020年8月1日
AI从底物和酶的结构中预测米氏常数,量化酶活性
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
《人工智能在化学领域的应用全景》白皮书
专知会员服务
36+阅读 · 2022年1月22日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
数据资产化前瞻性研究白皮书
专知会员服务
46+阅读 · 2021年11月19日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
47+阅读 · 2021年5月17日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
221+阅读 · 2020年8月1日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员