Prompt-based learning methods in semi-supervised learning (SSL) settings have been shown to be effective on multiple natural language understanding (NLU) datasets and tasks in the literature. However, manually designing multiple prompts and verbalizers requires domain knowledge and human effort, making it difficult and expensive to scale across different datasets. In this paper, we propose two methods to automatically design multiple prompts and integrate automatic verbalizer in SSL settings without sacrificing performance. The first method uses various demonstration examples with learnable continuous prompt tokens to create diverse prompt models. The second method uses a varying number of soft prompt tokens to encourage language models to learn different prompts. For the verbalizer, we use the prototypical verbalizer to replace the manual one. In summary, we obtained the best average accuracy of 73.2% (a relative improvement of 2.52% over even the previous state-of-the-art SSL method with manual prompts and verbalizers) in different few-shot learning settings.
翻译:半监督学习(SSL)环境中的即时学习方法已证明对多种自然语言理解(NLU)数据集和文献中的任务十分有效。然而,手工设计多重提示和言语需要域内知识和人的努力,使得在不同数据集中进行比例化变得困难和昂贵。在本文中,我们提出两种方法,在不牺牲性能的情况下,自动设计多个提示和在SSL设置中结合自动语言传译。第一种方法使用各种演示示例,并附有可学习的连续即时符号,以创建多种快速模型。第二种方法使用不同数量的软提示,鼓励语言模型学习不同的提示。对于语言,我们使用原型语言传译器取代手动的。简而言之,我们在不同微小的学习环境中获得了73.2%的最佳平均精度(比以前最先进的SLSL方法用手动提示和语言传译器提高了2.52% ) 。